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Abstract. This paper presents an efficient algorithm for the dynamics simulation and analysis
of multi-flexible-body systems. This algorithm formulates and solves the nonlinear equations of
motion for mechanical systems with interconnected flexible bodies subject to the limitations of
modal superposition, and body substructuring, with arbitrarily large rotations and translations.
The large rotations or translations are modelled as rigid body degrees of freedom associated
with the interconnecting kinematic joint degrees of freedom. The elastic deformation of the
component bodies is modelled through the use of modal coordinates and associated admissible
shape functions. Apart from the approximation associated with the elastic deformations, this
algorithm is exact, non-iterative and applicable to generalized multi-flexible chain and tree
topologies. In its basic form, the algorithm is both time and processor optimal in its treatment
of the nb joint variables, providing O(log(nb)) turn around time per temporal integration step,
achieved with O(nb) processors. The actual cost associated with the parallel treatment of the
nf flexible degrees of freedom depends on the specific parallel method chosen for dealing with
the individual coefficient matrices which are associated locally with each flexible body.
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N~aP Translational acceleration of point P in Newtonian reference
frame N

AP Spatial acceleration, a 6 × 1 column matrix, of differential element P in
Newtonian frame N

Spatial acceleration remainder term, a 6 × 1 column matrix, of differential
AP

t element P in Newtonian frame N . Contains prescribed motion as well as
centripetal and Coriolis accelerations contributions to spatial acceleration.

A Jk

t Spatial acceleration remainder term associated with the acceleration of joint Jk

handle k+ relative to handle k−

A
k+1−/k+

t Spatial acceleration remainder term associated with the acceleration of outward
handle k + 1− relative to handle k+, both belonging to body k

~b× 3×3 skew symmetric matrix for cross product of any vector~b
CT Transpose of any arbitrary matrix C
D Domain of spatial integration
DJk Orthogonal complement of P Jk

~fP Body force at point P
~fc

i
Constraint force at joint i

f̃c
i

Measure numbers of constraint force at joint i
Fc

i Spatial constraint force at joint i
Jk Joint connecting body k to its parent body
k̂i Unit vector in direction i
mk Number of degrees-of-freedom associated relative motion across joint Jk

N Newtonian reference frame
nb Number of bodies in the system
P Jk Free modes of motion subspace map/matrix associated with joint Jk

P Jk

r rth spatial partial velocity of joint handle k+ relative to handle k−

occurring across joint Jk. The rth column of P Jk

P k+ Free modes of motion subspace map/matrix associated with absolute
motion of handle k+

P k+

r rth spatial partial velocity of handle k+ in Newtonian frame N
qk
i ith Modal Coordinate of a flexible body k
q̇ k
i Time derivative of ith modal coordinate of a flexible body k
q̈ k
i Second time derivative of ith modal coordinate of a flexible body k
~r Position vector

Sk/k+1 Shift Matrix between joint k and k + 1

[
U ~r×
0 U

]
uJk Generalized speed matrix associated with motions permitted by joint k
uJk

r rth Generalized speed associated with motions permitted by joint k.
The rth element of uJk

uk+ Generalized speed matrix associated with absolute motions of joint handle k+

uk+

r rth Generalized speed associated with the absolute motion of handle k+.
The rth element of uk∗
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u̇ Time derivative of generalized speed u
U 3× 3 Identity matrix
N~vP Translational velocity of a point P in the Newtonian reference frame N
N~vk+

r rth partial velocity of joint handle k+ in Newtonian frame N
~vJk

r rth partial velocity of joint handle k+ relative to handle k− in parent frame
V k+ Absolute spatial velocity, a 6 × 1 column matrix, of handle (point) k+ in

Newtonian reference frame N
V Jk

t Relative spatial velocity remainder terms, a 6 × 1 column matrix, associated
specified motions which are imposed across joint Jk

~α Angular acceleration of reference frame in Newtonian frame N
βij Contribution to generalized active force
ζ Inertia coupling terms for individual body or subassembly
νk Number of assumed mode shapes for a flexible body k
ρ Mass density
~τ i

c Constraint torque at joint i
τ̃ i
c Measure numbers of constraint torque at joint i

Υk:l Inertia coupling terms for assembly comprised of contiguous bodies k through l
~ϕ Admissible shape function for translational components of deformation
~ϕ|P ~ϕ evaluated at point P

Φ Spatial matrix containing the shape functions
[
~ψ
~ϕ

]
~ψ Admissible shape function for rotational components of deformation
N~ωP Angular velocity of reference frame fixed in differential element P relative to

the Newtonian reference frame N
N~ωk+

r rth partial angular velocity of joint handle k+ in frame Newtonian frame N
N~ωJk

r rth partial angular velocity of joint handle k+ relative to handle k−

0 3× 3 Zero matrix

Table 1: The Nomenclature

1 Introduction

Modelling and simulation of the dynamic behavior of complex systems are regularly pursued
by engineers and scientists in a wide variety of fields. Applications may include coarse-grained
molecular dynamics simulations for advanced material modelling (e.g. polymer chains) and
biomolecular systems (e.g. RNA, DNA and proteins); elastic deformation of MEMS devices;
modelling the dynamic behavior of multi-continuous bodies (e.g. drive belts, tracks and tracked
vehicles); robotic systems and myriad mechanisms and electro-mechanical devices. These sys-
tems are typically modelled as articulated, i.e. a system comprising of rigid and (or) flexible
bodies interconnected by kinematic joints to form a chain, tree or kinematically closed loop
topology. Depending on the system considered and the resolution of the model, these simu-
lations may include a large number of spatial degrees of freedom. For example, applications
such as biomolecular systems or molecular modelling of materials may easily involve several
thousand (> 105) spatial degrees of freedom and aim to capture phenomenon over large tempo-
ral scales (> 106 temporal integration steps). With the continued trend towards ever increasing
problem size (greater model fidelity, and larger scale systems) and hence growing computational
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burden, use of efficient algorithms and exploring parallel computing resources have emerged as
the primary means to reduce simulation turn-around times.

Due to this accelerating need for understanding, predicting, and controlling the dynamic
behavior of many modern engineering systems, the development of algorithms for modelling
the dynamic behavior of multibody systems has received considerable attention over the past
three decades. These efforts have spawned algorithms and implementation procedures based on
fundamentally different philosophies, each with their own strengths and weaknesses. Some of
the earliest algorithms were O(n3) complexity [1]-[2], indicating that the computational cost,
which manifests itself in computer CPU time, increases as a cubic function of the number of
system generalized coordinates n. Subsequently several algorithms [3]-[9] were independently
proposed by various authors for solving the articulated rigid body dynamics problem in O(n)
complexity. A brief review of some of these and a discussion of the underlying similarities
between different algorithms has been discussed in [9]. These algorithms were initially limited
to multi-rigid body applications, but were then extended and generalized to accommodate flex-
ible body systems [10]-[15]. With these so-called O(n) algorithms, the simulation turn around
times scale approximately linearly with the increase in system size and hence are more efficient
than the traditional O(n3) approach when applied to large (n>>1) systems.

The lowest computational order possible for articulated body systems when using serial pro-
cessing is O(n). Parallel processing offers some potential for improving on this. With parallel
processing, it becomes theoretically possible to generate and solve the equations of motion of
the system in as low as O(log(n)) complexity. Actual performance is generally not able to
achieve the theoretical complexity due to restrictions of true parallel performance as described
by Amdahl’s law [16], and actual inter-processor communications costs.

In 1995 Fijany and Sharf [17] proposed the Constraint Force Algorithm (CFA) for serial
kinematic chains. This was the first parallel algorithm which was time optimal, i.e. O(log(n)) in
time per temporal integration step and processor optimal, i.e. O(log(n)) performance achieved
with only O(n) processors. In 1999 Featherstone [18]-[19] proposed a Divide and Conquer
Algorithm for articulated rigid body systems (hereafter referred to as RDCA). This algorithm
also achieved time optimal O(log(n)) complexity for parallel implementation with processor
optimal O(n) processors, and could be applied to more general topologies. This algorithm is
highly efficient for simulating the forward dynamics of articulated rigid body systems when
implemented in parallel on number of processors equal to or greater than the number of bodies
in the system.

Rigid body dynamics, though able to represent the gross behavior of many systems, is often
inadequate in capturing the essential behavior of systems with flexible bodies. In this paper, we
present a Divide and Conquer Algorithm for flexible bodies. This algorithm is a generalization
of the RDCA to include flexible bodies in the articulated system and maintains logarithmic
computational complexity. The goal of this algorithm is to produce and subsequently solve the
equations of motion for multi-flexible body systems such that the equations associated with the
individual bodies are effectively uncoupled from those of the other system bodies, and are also
highly parallelizable.

The individual bodies that form the articulated system are modelled as flexible subject to the
limitations of modal superposition and body substructuring, with arbitrarily large rotations and
translations. A component mode type formulation is used whereby a reduced set of assumed
modes is used to describe the deformation of a component body. These assumed mode shapes
could be free-free, clamped-free, or any other appropriate set of vibration modes, constraint
modes and / or any required static correction modes. The mode shapes can be obtained for
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each body from finite element analysis, analytic models or experimental analysis. The choice
of the reduced set of shapes has been studied in depth in literature [20]-[22] and without loss
of generality it is assumed that a set of admissible mode shapes is obtained for each component
body as an input to this algorithm. The temporal coefficients of these mode shapes are treated
as the flexible degrees of freedom and solved for in this algorithm. The coupling between the
finite joint rotations and the elastic deformations of the bodies is preserved in this formulation.
Consequently, the mass matrix obtained for each flexible body is a nonlinear function of the
joint and flexible body generalized coordinates associated locally with it, while the bias force
terms are nonlinear functions of the generalized coordinates and velocities [24].

2 Theoretical Development of the Algorithm

The theoretical development which follows is divided into two sections. The first deals with
the basic Divide and Conquer Algorithm (DCA) which involves the interactions of assemblies
with other assemblies through their connecting handles (joints). These assemblies may be point
masses, rigid bodies, flexible bodies, or collections of any of these. As such this first portion of
the development is independent of the type of components which comprise the assemblies. The
subsequent section of the development is dedicated to the efficient handling of aspects which
are specific to the treatment of flexible bodies within these assemblies.

2.1 Basic Divide and Conquer Algorithm

The basic algorithm works in a manner highly similar to the DCA scheme explained in
detail in [18][19]. It is presented here so that this paper might be more self contained. The basic
unit of the DCA scheme is the two-handle representation of a body. A handle is any selected
reference on the body through which the interactions of the body with the environment can
be modelled. The handles on a body can correspond to a joint location, a center of mass or
any desired reference point. The two handles can even coincide. For the algorithm presented
here, the joint locations are chosen as the handles on the body. Consider two representative
bodies Body k and Body k+1 of the articulated body system as shown in figure (1A). The two
handles on Body k correspond to the locations Jk+ and Jk+1− associated with joints Jk and
Jk+1, respectively. Similarly, the two handles on Body k+1 correspond to the locations Jk+1+

and Jk+2− , associated with joints Jk+1 and Jk+2. In an effort to make the notation used in the
following derivation more concise, points k+ and k− will be synonymous with joint Jk handles
Jk+ and Jk−, respectively.

There are two main processes in the DCA approach, a hierarchic assembly process and a
hierarchic disassembly process. In the hierarchic assembly process, the equations of motion of
each body are written in terms of the 6 × 1 spatial accelerations occurring at each of its two
handles (the procedure may be easily generalized to bodies with more than two handles) in the
form expressed below for a representative body Body k.

A k+

=

[
~αk+

~ak+

]
(6×1)

= ζk
11F

k+
c + ζk

12F
k+1−

c + ζk
13 (1)

A k+1− =

[
~αk+1+

~ak+1+

]
(6×1)

= ζk
21F

k+
c + ζk

22F
k+1−

c + ζk
23 (2)

The above equation set is henceforth referred to as the two handle equations of motion of repre-
sentative body Body k. Here ~αk+ and ~ak+ represent the 3× 1 absolute angular acceleration, and
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J k +

F k+ F k+2 --

F k+1+

Jk+1 -- Jk+1+

body k body k+1

F k+1 --

Joint Free-Motion Subspace P J k

J k+2 --
J k +

F k+ F k+2 --

Assembly of

body k & body k+1

Relative motion embedded in inertia coupling 
terms and constraint  forces at the boundary

J k+2 --

1B : Assembly of bodies k and k+11A : Representative bodies of an articulated system

Figure 1: Two Handle Articulated Body

3× 1 absolute translational acceleration, respectively, of a reference frame fixed in a differential
element of volume at point k+ within the potentially deformable body k. A k+ and A k+1− are
then the spatial accelerations 1 of Body k at joint handle locations k+ and k + 1−, respectively.
The modal coordinates, as well as their first and second time derivatives manifest themselves
in the kinematic relationship which relate accelerations of each of the body’s handles. This is
shown in detail in section (3.2) which presents the derivation of the equations of motion. The
terms ζk

ij (i, j = 1, 2) correspond to inertia coupling at the joint locations on Body k. F k+
c and

F k+1−
c are the unknown spatial constraint loads acting on the body at the joints, and are defined

as

F k+
c =

[
~τ k

c
~f k
c

]
(6×1)

and F k+1+

c =

[
~τ k+1

c
~f k+1
c

]
(6×1)

(3)

with ~τ i
c (3×1) and ~f i

c (3×1), representing the constraint torques and constraint forces, respectively
being imposed through joint i . The active forces at the joint are state dependent and are treated
as known quantities. These are lumped together with the state dependent inertia forces and
expressed as ζij (i = 1, 2; j = 3). Similarly the two handle equations of motion for Body k+1
can be written in the form

A k+1+

= ζk+1
11 F k+1+

c + ζk+1
12 F k+2−

c + ζk+1
13 (4)

A k+2− = ζk+1
21 F k+1+

c + ζk+1
22 F k+2−

c + ζk+1
23 (5)

The spatial accelerations A k+ and A k− occurring at each end of joint Jk are related kine-
matically by

A k+

= A k− + P Jk

u̇Jk

+ A Jk

t (6)

where P Jk is the 6 ×mk matrix of the free-modes of motion [23] permitted by the mk degree-
of-freedom joint Jk, and uJk is the mk × 1 matrix of associated generalized speeds [28]. These

1Note that this definition for spatial Accelerations differs from that presented by Featherstone [18]
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free-modes of motion define the manner (both rotational and translational) in which the child
body k may move relative to its parent body (in this case body k − 1). As such P Jk forms a
joint free-motion map with each column of this matrix being synonymous with the spatial par-
tial velocities discussed in [28]. As such the constraint torques and forces which exist through
the enforcement of joint constraints, as well as any specified/prescribed joint motions, are or-
thogonal to these free-modes of motion. Finally, the quantity A Jk

t is the 6× 1 matrix of spatial
acceleration remainder terms associated with the motion of body k relative to it parent body
k − 1 as permitted by joint Jk. This quantity accounts for all portions of the acceleration of
k relative to it parent arising from specified joint motions, as well as Coriolis and centripetal
accelerations.

In the hierarchic assembly process, the two handle equations of motion of two successive
bodies are coupled together to form the two handle equations of motion of the resulting assem-
bly. If for example we consider the assembly formed from successive bodies k and k + 1, as
shown in figure (1A-B) then the associated assemble two-handle equations are

A k+

= Υk:k+1
11 F k+

c + Υk:k+1
12 F k+2−

c + Υk:k+1
13 (7)

A k+2− = Υk:k+1
21 F k+

c + Υk:k+1
22 F k+2−

c + Υk:k+1
23 (8)

The two handles of the resulting assembly are the inward most joint of the Body k viz. Jk+ and
the outward most joint on the Body k+1 viz. Jk+2− and the constraint loads are those acting on
the resulting assembly at those handles as indicated in figure (1B). The inertia coupling terms,
Υk:k+1

ij , for the resulting assembly are calculated using a recursive set of formulae as discussed
and presented in section (3.3) of this paper.

This process begins at the level of individual bodies of the system. Adjacent bodies of the
system are hierarchically assembled as the construction of a binary tree as shown in figure
(2). Individual bodies that make up the system form the leaf nodes of the binary tree. The
equations of motion of a pair of bodies are coupled together using the recursive set of formulae
to form the two handle equations of motion of the resulting assembly. The resulting assembly
now corresponds to a node of the next lower level in the binary tree. The process is then
recursively applied further combining adjacent pairs of assemblies into larger (including more
component bodies) assemblies as the procedure works downward toward the root of the binary
tree. This hierarchic assembly process continues until only a single all-encompassing system
assembly is left as the root node of the binary tree. This root node corresponds to the two-handle
representation of the entire articulated n-body system reduced to a single assembly, with inertia
coupling terms, Υ1:n

ij , (i = 1, 2; j = 1, 2, 3). The two-handle equations associate with this root
node are

A 1+

= Υ1:n
11 F

1+
c + Υ1:n

12 F
n+1−

c + Υ1:n
13 (9)

An+1− = Υ1:n
21 F

1+
c + Υ1:n

22 F
n+1−

c + Υ1:n
23 (10)

with the two handles of this assembly corresponding to the boundary joints of the articulated
system.

If the system is free floating, the spatial constraint forces acting on the two handles are
identically zero. The spatial accelerations can then be easily obtained as

A 1+

= Υ1:n
13 and An+1− = Υ1:n

23 (11)

If the system is anchored at joint J1, then the spatial constraint force F 1+
c acting on the inward

anchored joint is non-zero while at the free end, F n+1−
c is zero. However, the spatial constraint
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Figure 2: The Hierarchic Assembly and Disassembly Process Using Binary Tree Structure

force F 1+
c lies in the subspace orthogonal to the free-modes of motion subspace of joint J1.

Hence the inner product of the matrix P J1 which maps the joint free-modes of motion subspace
and the spatial constraint force F 1+

c is identically zero. The joint free-modes of motion subspace
P Jk and its orthogonal complement DJk are discussed in further detail in section (3.1). Thus,
using the joint free-modes of motion matrix, the two handle equations of motion of the root
node can be manipulated as shown below.

A 1+

= P J1

u̇J1

+ A J1

t = Υ11F
1+
c + Υ1:n

13 (12)

⇒ (P J1

)T (Υ1:n
11 )−1(P J1

u̇J1

+ A J1

t −Υ1:n
13 ) = (P J1

)TF 1+
c = 0 (13)

⇒ (P J1

)T (Υ1:n
11 )−1P J1

u̇J1

= (P J1

)T (Υ1:n
11 )−1(Υ1:n

13 − A J1

t ) (14)

Let Q = [(P J1

)T (Υ1:n
11 )−1P J1

] (15)

⇒ u̇J1

= Q−1P J1

(Υ1:n
11 )−1(Υ1:n

13 − A J1

t ) (16)

In the above equations uJ1 is the matrix of generalized speeds [28] which characterize the free
motions which may take place across joint J1. Additionally Υ1:n

11 and Q are symmetric positive
definite matrices (SPD) and there is no problem with their matrix inversions. The term A J1

t is
state dependent and is easily calculated. Having solved for u̇J1 , the spatial acceleration A 1+

can be obtained by equation (6). This value of the spatial acceleration can then be used in two-
handle equation (7) to determine the spacial constraint force F 1+

c . This inward handle spatial
constraint force may then be substituted into the two handle equation (8) for the determination
of the spatial acceleration at the outer handle. Thus, whether the system is free floating or
anchored, the equations of motion at the root node can be solved to generate the values of the
spatial accelerations and spatial constraint forces at the two handles. The case where the system
contains kinematically closed loops is the topic of an associated paper [29].

The hierarchic disassembly process begins with the solution of the two-handle equations of
motion of the root node. From this solution, the spatial accelerations of and spatial constraint
forces acting on the two handles of the single assembly are known. The spatial acceleration
and spatial constraint forces generated by solving the two handle equations of an assembly are
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Jk+

P0

P

Undeformed Configuration

Deformed Configuration Differential Volume 
dD

r 0

r P

δ

Figure 3: Deformed and Undeformed Configuration of Representative Body k

identically the values of the spatial accelerations and spatial constraint forces on one handle on
each of the two constituent assemblies. From these known quantities, the two handle equations
of motion of the constituent assemblies can be easily solved for the spatial constraint force and
spatial acceleration at the connecting joint. For example, for a representative assembly made
from Body k and Body k+1, the equations of motion are given by equation (7-8). On solving
these equations the quantities A k+ , A k+2− , F k+

c , and F k+2−
c are generated. These quantities are

then substituted into the two-handle equations of the constituent sub-assemblies say for Body
k and Body k+1. Thus knowing the values of A k+

, F k+

c , equations (1-2) can be easily solved,
while from A k+2− and F k+2−

c equations (4-5) can be solved. This process is repeated in a
hierarchic disassembly of the binary tree where the known boundary conditions are used to solve
the two-handle equations of motion of the immediate subassemblies, until spatial acceleration
and spatial constraint forces on all bodies in the system are calculated. As mentioned above,
the time derivatives of the modal coordinates are embedded in the kinematics which relate
spatial accelerations of the joints on the same body. Having solved for the spatial accelerations
of the joints in the hierarchic disassembly, the time derivatives of the modal coordinates can
now be solved for independently on each body. The expression for the time derivatives of the
modal coordinates is derived in detail in the section (3.2) which deals with the derivation of the
equations of motion.

Similar to the scheme in RDCA, this algorithm works in four sweeps, traversing the system
topology like a binary tree. The first and the third sweep work from the leaf nodes of the binary
tree to the root node while the second and the fourth sweep work upward, from the root node
to the leaf nodes. The input to this algorithm is comprised of the mass properties of the bodies,
joint generalized coordinates and speeds, the modal coordinates and their first time derivatives
as well as the admissible shape functions for each body. The first two sweeps generate the
position and velocity of each handle on each node by using an assembly-disassembly process
similar to that described in [18]. On completing the two sweeps, on each leaf node, the coor-
dinate transformations, the state dependent accelerations, the active joint forces and the state
dependent elastic deformation terms are calculated. The active forces are state dependent and
include actuator forces acting at the joints, damping forces, body forces like gravity as well as

Paper #:CND-05-1055 Corresponding Author: Kurt S. Anderson 9



Rudranarayan M. Mukherjee, Kurt S. Anderson

the elastic forces arising from the deformation of the bodies. The final two sweeps correspond
to the hierarchic assembly and the hierarchic disassembly processes respectively.

In the analytical treatment presented here, direction cosine matrices and transformation be-
tween different basis are not shown explicitly. Appropriate basis transformations must be taken
into account for an implementation of this algorithm. Also, this algorithm uses a mixed set
of coordinates viz. Cartesian coordinates and relative coordinates throughout the derivation.
Mixed set coordinates have been used in [25][26] for rigid body dynamics and in [27] for flexi-
ble body dynamics among others.

3 Extension to Flexible Bodies

The following subsections present the details associated with efficiently dealing with flexible
bodies within the divide and conquer assemblies, and having these flexible aspects manifest
themselves properly through the assembly handles to the rest of the system.

3.1 Kinematic Preliminaries

Consider flexible Body k as a typical body of the articulated body system. Body k has two
handles corresponding to the two joints by which it is connected to the rest of the system. As
with the basic development already presented, this procedure is easily extendable to more than
two handles. As before, the inward joint is Jk with associated handle k+, and the outward joint
is Jk+1 with associated handle k + 1−. The local “body fixed” reference frame associated with
Body k, is rigidly attached to the material point of Body k, located at joint handle k+, and thus
rotates and translates with that material point. Body k undergoes relative rigid body motion at
the joint handle k+ with respect to its inward (parent) body and deforms elastically with respect
to its body fixed reference frame.

Figure (3) shows the deformed and undeformed configurations of the Body k. In its unde-
formed configuration let P0 be an arbitrary differential volume δD and let the vector ~r0 describe
the position of P0 with respect to the body fixed reference frame at Jk+ (k+). After undergoing
elastic deformation, let P denote the differential volume in the deformed configuration. ~rP is
the vector describing the position of point P with respect to k+. The displacement vector ~δ is
expressed in terms of shape functions evaluated at P , φk

i |P , and modal coordinates qk
i . Finally,

νk is the number of mode shapes associated with Body k.

~rP = ~r0 + ~δ (17)

~δ =

νk∑
i=1

~ϕi
kqk

i |P (18)

Let V k+ represent the spatial velocity of handle (point) k+ with respect to the inertial refer-
ence frame N . The kinematic expressions for velocity are obtained as below.

V k+

=

[
N~ω k+

N~v k+

]
(6×1)

(19)

V P =

[
N~ω P

N~v P

]
(6×1)

= NV k+

+

[
~0

N~ω k+ × (~r0 + ~δ)

]
+ Φ k q̇ k (20)

= (S P/k+

)T V k+

+ Φ k q̇ k (21)
(22)
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where Φ k q̇ k =

vk∑
i=1

φk
i q̇i

k|P (23)

with φk
i =

[
~ψk

i

~ϕk
i

]
(24)

and S P/k+

=

[
U ~rP×

0 U

]
(6×6)

(25)

Similarly, let A k+ represent the spatial acceleration of handle k+ with respect to the inertial
reference frame N. The kinematic expression for the spatial accelerations of arbitrary differential
volume at P can be obtained as below with the understanding that summation is implied over
the index i unless explicitly stated.

A k+

=

[
N~α k+

N~a k+

]
(6×1)

(26)

AP = (S P/k+

)TA k+

+ A
P/k+

t + Φ k q̈ k (27)

where Φ k q̈ k =

νk∑
i=1

φi
kq̈i

k|P (28)

and A
P/k+

t =

[
N~ω k+ ×

∑νk

i=1 ψi
kq̇i

k

N~ω k+ × (N~ω k+ × ~rP ) + 2N~ω k+ ×
∑νk

i=1 ~ϕi
kq̇i

k

]
P

(29)

This formulation uses a mixed set of state variables (i.e. a redundant set of both absolute and
relative variables) to describe both the spatial velocities and spatial accelerations. As such the
spatial velocity for handle k+ may be correctly described using absolute generalized speed uk+

as

V k+

=

[
N~ω k+

N~v k+

]
(30)

=

[
N~ω k+

r
N~v k+

r

]
uk+

r +

[
N~ω k+

t
N~v k+

t

]
(31)

= P k+
r uk+

r + V k+

t︸︷︷︸
0

= P k+uk+ (32)

where summation is implied of the repeated index r (r = 1, . . . , 6). In this expression, P k+
r

represents the rth spatial partial velocity of handle k+ in reference frame N , with uk+

r being the
associated absolute generalized speed. These generalized speeds have been chosen to be the
full set of six measure numbers [28] associated with the absolute velocity and angular velocity
of handle k+ in N . The matrices P k+

(6×6) and uk+
(6×1), appearing in the final term of equation(32)

thus contain the complete set spatial partial velocities, and associated generalized speeds for the
describing the absolute spatial velocity of handle k+. The matrix V k+

t nominally contains the
spatial velocity remainder terms which are associated with any prescribed motion for handle
k+. However, because P k+ and uk+ used here span the full six degrees-of-freedom of handle
k+ in N , V k+

t is identically zero.
The spatial velocity of handle k+ in N may be equally well represented in terms of the

spatial velocity of its parent handle k−, and the relative spatial velocity of k+ with respect to k−

Paper #:CND-05-1055 Corresponding Author: Kurt S. Anderson 11



Rudranarayan M. Mukherjee, Kurt S. Anderson

as permitted by joint Jk. Specifically,

V k+

= V k− + V k+/k− (33)
= V k− + (P Jk

uJk

+ V Jk

t ) (34)

Here P Jk and uJk are the matrices containing the spatial partial velocities and associated gen-
eralized speeds which fully define the manner and magnitude, respectively, with which free
motions may take place across joint Jk. As such P Jk forms a joint free-modes of motion map
for joint Jk, and V Jk

t contains all terms associated with specified motions handle k+ relative
k−, occurring across joint Jk.

From equations (19), (31) and (32) the partial velocities for absolute spatial motion of handle
k+ in N can be expressed as

P k+
r =

[
N~ω k+

r
N~v k+

r

]
(6×1)

(35)

=

[
k̂i

~0

]
(6×1)

for r = i, i = 1, 2, 3 (36)

=

[
~0

k̂i

]
(6×1)

for r = i+ 3, i = 1, 2, 3 (37)

Similarly, the partial velocities N~v P
r and N~ω P

r associated with differential mass P can be
expressed as

P P
r = (S P/k+

)T (P k+
r ) + Φ k

r |P (38)

=

[
k̂i

k̂i × ~rP

]
(6×1)

for r = i, i = 1, 2, 3 (39)

=

[
~0

k̂i

]
(6×1)

for r = i+ 3, i = 1, 2, 3 (40)

=

[
~ψk

i

~ϕk
i

]
P (6×1)

for r = i+ 6, i = 1, · · · , νk (41)

Another entity which is useful in the derivation of this algorithm is the joint Jk orthogonal
complement map. The free-modes of motion permitted by the joint and the joint degrees of
freedom lie in the space spanned by the column vector(s) of matrix P Jk . It can be interpreted
as the 6×mk matrix that maps the mk generalized speeds associated with the relative motions
permitted by the joint into a 6× 1 spatial relative velocity occurring across the joint. Let DJk

be the orthogonal complement of the joint free-motion subspace matrix P Jk . While P Jk is
a 6 ×mk matrix corresponding to the mk × 1 column of joint degrees of freedom, DJk is a
6 × (6 −mk) matrix that maps the directions imposed on the constrained degrees of freedom
(which include specified motions) of the joint. As such DJk exactly spans the space of all
constraint loads which may be imposed by joint Jk. For example, with a spherical joint, the
translational degrees of motion are constrained while the rotational degrees of freedom are
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maintained. Hence the corresponding maps are given by

P Jk

=

[
k̂1 k̂2 k̂3

~0 ~0 ~0

]
=


1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0

 and DJk

=

[
~0 ~0 ~0

k̂1 k̂2 k̂3

]
=


0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

 (42)

By definition of the orthogonal complement P Jk and DJk satisfy the following relation:

(DJk

)
T
P Jk

= 0 (43)

3.2 Flexible Body Kinetics

The equations of motion of a generic body of the system, Body k, can be written as below
using a velocity projection formulation also known as Kane’s [28] method.

∫
Bk

{N ~vr
P · (N~aPρ dD) + N ~ωr

P ·
0︷ ︸︸ ︷

(N~αP dI)−[N ~vr
P · ~f P + N ~vr

k+

· ~fc

k+

+ N ~ωr
k+

· ~τc k+

+N ~vr
k+1− · ~fc

k+1−

+ N ~ωr
k+1− · ~τc k+1− ]} = 0 (44)

Consider the constituent terms of the above equation separately. In the above equation
∫

Bk

N ~vr
P ·

(N~aPρ dD) is the Generalized Inertia Force term, where N~aP can be expanded as below.∫
Bk

N ~vr
P · (N~aPρ dD) =

∫
Bk

N ~vr
P · [ N~a k+

+ N~α k+ × ~rP + N~ω k+ × (N~ω k+ × ~rP )

+ 2 N~ω k+ × ~ϕi
kq̇i

k|P + ϕi
kq̈i

k|P ]ρ dD (45)

where summation is implied over the repeated indices. For r = i = 1 , 2 , 3 , associated with the
spatial rotation of the Body k parent joint, the above becomes∫

Bk

N ~vr
P · (N~aPρ dD) = [

∫
Bk

~rP × (k̂i × ~rP )ρdD)] · N~α k+

+ k̂i · [
∫

Bk

~rPρdD × N~a k+

]

−k̂i · [N~ω k+ ×
∫

Bk

(~rP~rPρdD) · N~ω k+

] + 2 N~ω k+ · [
∫

Bk

~ϕj
k|P × (k̂i × ~rP )ρdD]q̇j

k

+[k̂i ·
∫

Bk

( ~ϕj
k|P × ~rPρdD)]q̈j

k (46)

For r = i + 3 , (i = 1 , 2 , 3 ), associated with the spatial translation of the Body k parent joint,
the expansion becomes∫

Bk

N ~vr
P · (N~aPρ dD) = k̂i · (N~α k+ ×

∫
Bk

~rPρdD) + k̂i · [N~ω k+ × (N~ω k+ ×
∫

Bk

~rPρdD)]

+k̂i ·
∫

Bk

(ρ ~ϕj
k|PdD)q̈j

k + k̂i · (N~a k+

∫
Bk

ρdD) + k̂i · [2 N~ω k+ ×
∫

Bk

(ρ ~ϕj
k|PdD)]q̇j

k (47)
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For r = i + 6 , (i = 1 , · · · , νk), associated with the modal coordinates of Body k, it takes the
form ∫

Bk

N ~vr
P · (N~aPρ dD) = N~a k+

∫
Bk

(~ϕi
k|PρdD) + N~α k+

∫
Bk

(~rP × ~ϕi
k|P )ρdD

+

∫
Bk

(~ϕi
k|P · ~ϕj

k|PρdD)q̈j
k + N~ω k+ ·

∫
Bk

([~rP ~ϕi
k|P − ~ϕi

k|P~rP ]ρdD) · N~ω k+

+

∫
Bk

[~ϕi
k|P · (2 N~ω k+ × (ρ ~ϕj

k|P ))]q̇j
kdD (48)

The above equations can be collected together and expressed in matrix format as

∫
B

N ~vr
P · (N~aPρ dD) =

Γ11 Γ12 Γ13

Γ21 Γ22 Γ23

Γ31 Γ32 Γ33

k αk+

ak+

q̈ k

 +

β11

β12

β13

k

(49)

A closer inspection of above equations (46-48) clearly identifies several terms in the mass
matrix which retain the coupling between the finite rotations at the joints and the elastic defor-
mation of the body. This clearly shows the mass matrix to be a nonlinear function of the joint
and flexible body coordinates while the bias force is a nonlinear function of the coordinates and
the speeds.

The equations above contain integrals over the volume of the body. Once the modal set Φ k to
be used for each of the flexible bodies has been selected, these spatial integrals (or summations
in the case of discrete masses) produce time invariant coefficients for the temporally varying
quantities (q, q̇, q̈). As such these coefficients need only be calculated once at the beginning (a
pre-processing step) of the simulation.

From equation (44), the Generalized Constraint Force contribution arising from the handle
k+ is given by the [N~v k+

r · ~f k+

c + N~ω k+

r · ~τ k+

c ] term. For r = i = 1 , 2 , 3 it is expanded as

(N~v k+

r · ~f k+
c + N~ω k+

r · ~τ k+
c ) = k̂i · [(~f k+

c × ~rP ) + ~τ k+
c ] = γ1

k+

Fc
k+1 (50)

while for r = i + 3 , (i = 1 , 2 , 3 ) it is expressed as

(N~v k+

r · ~f k+
c + N~ω k+

r · ~τ k+
c ) = k̂i · ~f k+

c = γ2
k+

Fc
k+ (51)

And for r = i + 6 , i = 1 , · · · , νk it is expressed as

(N~v k+

r · ~f k+
c + N~ω k+

r · ~τ k+
c ) = [~ϕk

i |k+ · ~f k+
c + ~ψi

k
|k+ · ~τ k+

c ] = γ3
k+

Fc
k+ (52)

In equation (44) [N ~vr
k+1− · ~fc

k+1−

+ N ~ωr
k+1− · ~τc k+1−] is the Generalized Constraint Force

term associated with the handle Jk+1. It can be expanded for r = i = 1 , 2 , 3 as

(N~v k+1−

r · ~f k+1−

c + N~ω k+1−

r · ~τ k+1−

c ) = ~f k+1−

c · (k̂i × ~rk+1−) + k̂i · ~τ k+1−

c (53)

= γ1
k+1−Fc

k+1− (54)

while for r = i + 3 , (i = 1 , 2 , 3 ) it is expressed as

(N~v k+1−

r · ~f k+1−

c + N~ω k+1−

r · ~τ k+1−

c ) = k̂i · ~f k+1−

c = γ2
k+1−Fc

k+1− (55)
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And for r = i + 6 , i = 1 , · · · , νk it is expressed as

(N~v k+1−

r · ~f k+1−

c + N~ω k+1−

r · ~τ k+1−

c ) = [~ϕk
i |k+1− · ~f k+1−

c + ~ψk
i |k+1− · ~τ k+1−

c ] (56)

= γ3
k+1−Fc

k+1− (57)

Similarly, in equation (44) [N ~vr
P · ~f P ] is the Generalized Body Force term. This term

includes the stiffness terms originating from the deformation of the flexible body as well as
gravitational and other body forces. It can be expanded as

for r = i = 1 , 2 , 3∫
Bk

N~v P
r · ~fPdD) = k̂i ·

∫
Bk

(~fP × ~rP )dD = β21 (58)

for r = i + 3 , (i = 1 , 2 , 3 )∫
Bk

N~v P
r · ~fPdD = k̂i ·

∫
Bk

~fPdD = β22 (59)

for r = i + 6 , (i = 1 , · · · , νk)∫
Bk

N~v P
r · ~fPdD) =

∫
Bk

~ϕk
i |P · ~fP dD = β23 (60)

Collecting all the above equations into a matrix form, the equations of motion for Body k can
be expressed asΓ11 Γ12 Γ13

Γ21 Γ22 Γ23

Γ31 Γ32 Γ33

k αk+

ak+

q̈ k

−
γ1

γ2

γ3

k+

F k+

c −

γ1

γ2

γ3

 k+1−

F k+1−

c +

β11 − β21

β12 − β22

β13 − β23

k

=

0
0
0

 (61)

The above matrix equations can be further consolidated in terms of the rigid body joint
coordinates (variables) and the modal coordinates as[

ΓRR ΓRF

ΓFR ΓFF

]k [
A
q̈

]k+

−
[
γR

γF

]k+

F k+
c −

[
γR

γF

]k+1−

F k+1−

c +

[
βR

βF

]k

=

[
0
0

]
(62)

Here the terms with subscripts RR and R are associated with the absolute rigid body motion
of handle k+. The terms with subscript FR corresponds to the coupling between the absolute
rigid body motion of handle k+ and the flexible modes of body k. The terms with subscripts FF
and F are associated solely with the flexible body degrees of freedom of k. The above are two
sets of equations in terms of two sets of unknowns q̈ k and Ak+. Solving the lower equation, an
expression for q̈ k can be obtained as shown below.

Γ k
FRA

k+ + Γ k
FF q̈

k − γ k+
F F k+

c − γ k+1−

F F k+1−

c + βk
F = 0 (63)

⇒ q̈ k = (−Γ k
FF )−1

[
Γ k

FRA
k+ − γ k+

F F k+
c − γ k+1−

F F k+1−

c + βk
F

]
(64)

Substituting the expression for q̈ k in equation (63), an expression for Ak can be obtained as[
Γ k

RR − Γ k
RF (Γ k

FF )−1Γ k
FR]A k+ − [γ k+

R − Γ k
RF (Γ k

FF )−1γ k+
F

]
F k+

c (65)

−
[
γ k+1−

R − Γ k
RF (Γ k

FF )−1γ k+1−

F

]
F k+1−

c +
[
βk

R − Γ k
RF (Γ k

FF )−1βk
F

]
= 0

⇒ A k+ = ζk
11F

k+
c + ζk

12F
k+1−

c + ζk
13 (66)
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The above expressions involve an inversion of the Γ k
FF matrix. This matrix is local toBody k, is

of dimension νk×νk, and remains constant. It is diagonal if only orthogonal vibration modes are
used. Adding static correction modes will introduce off-diagonal terms that produce coupling
between the vibration and correction modes. The sparsity of this matrix is thus dependent on the
number of vibration and correction modes used. However, in all cases, the Γ k

FF is a symmetric
positive definite matrix and it remains constant through the simulation. The computational cost
of inverting this matrix is thus a fixed cost in the pre-processing analysis and there is no repeated
cost incurred during the simulation.

Now consider the spatial acceleration of handle k + 1− which is given by

A k+1− = (S k/k+1)TA k+

+ A
k+1−/k+

t + Φ k+1/k q̈ k (67)

Substituting the expression for q̈ k in the above equation, the equation becomes

A k+1− = (S k/k+1)
T
A k+ + A

k+1−/k+

t − (Φ k|k+1−)T (Γ k
FF )−1

[
Γ k

FRA
k+ − γ k+

F F k+
c (68)

−γ k+1−

F F k+1−

c + βk
F

]
⇒ A k+1− =

[
(S k/k+1)

T − (Φ k|k+1−)T (Γ k
FF )−1Γ k

FR

]
A k+

+
[
(Φ k|k+1−)T (Γ k

FF )−1γ k+1−

F

]
F k+1−

c

+
[
(Φ k|k+1−)T (Γ k

FF )−1γ k
F

]
F k+

c +
[
A

k+1−/k+

t − (Φ k|k+1−)T (Γ k
FF )−1βk

F

]
(69)

⇒ A k+1− = η1
kA k+ + η2

kF k+
c + η3

kF k+1−

c + η4
k (70)

where ηi (i = 1 : 4) simply represent useful intermediate coefficients which will aid in subse-
quent manipulations.

Now substituting the expression for A k into equation (70), the expression for A k+1− can be
obtained as

A k+1− = [η2
k + η1

kζk
11]F

k+
c + [ηk

3 + ηk
1ζ

k
12]F

k+1−

c + [ηk
4 + ηk

1ζ
k
13] (71)

= ζk
21F

k+
c + ζk

22F
k+1−

c + ζk
23 (72)

Thus, from equations (66) and (72) the two handle articulated body equations for the flexible
body k are given by

A k+ = ζk
11F

k+
c + ζk

12F
k+1−

c + ζk
13 (73)

A k+1− = ζk
21F

k+
c + ζk

22F
k+1−

c + ζk
23 (74)

Similarly for body (k+1), the two handle equations of motion are

A k+1+

= ζk+1
11 F k+1

c + ζk+1
12 F k+2−

c + ζk+1
13 (75)

A k+2− = ζk+1
21 F k+1

c + ζk+1
22 F k+2−

c + ζk+1
23 (76)

These equations are now in the same form as that of the two handle articulated body equa-
tions of motion found in Featherstone’s Divide-and-Conquer algorithm for rigid bodies (RDCA)
and as discussed in above section (2.1). These can now be coupled together to form the two
handle equations of motion of the resulting assembly.
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3.3 Recursive Expression for Inertia Coupling Terms

In the discussion of the general scheme of the Divide and Conquer Algorithm, it was men-
tioned that a set of recursive formulae is used to couple together the equations of motion of
successive bodies in the system to form the equations of motion of the resulting assemblies.
Reference [18] derives a set of recursive formulae but recommends an alternate set of formulae
(without derivation) for use in actual implementation for better computational efficiency. In this
section, a derivation of this alternate set of formulae is presented.

The relative acceleration at the joint connecting Body k and Body k+1 is given by the follow-
ing equation.

A k+1+ − A k+1− = P Jk+1

u̇Jk+1

+ AJk+1

t (77)

By Newton’s third law of motion the constraint force at handle k + 1+ viz. F k+1+

c and handle
k + 1− viz. F k+1−

c are equal in magnitude and opposite in direction. Using this fact and sub-
stituting the expressions for NA k+1− and NA k+1+ from equations (74) and (75) into equation
(77), an expression for F k+1+

c is obtained as

[ζk+1
11 + ζk

22]F
k+1+

c = [ζk
21F

k+
c − ζk+1

12 F k+2−

c + ζk
23

−ζk+1
13 + P Jk+1

u̇Jk+1

+ AJk+1

t ] (78)

⇒ F k+1+

c = [ζk+1
11 + ζk

22]
−1[ζk

21F
k+
c − ζk+1

12 F k+2−

c

+ζk
23 − ζk+1

13 + P Jk+1

u̇Jk+1

+ AJk+1

t ] (79)

Pre-multiplying equation (78) by (DJ k+1
)
T

gives

(DJk+1

)T [ζk+1
11 + ζk

22]F
k+1+

c = (DJk+1

)T [ζk
21F

k+
c + ζk

23 − ζk+1
13 − ζk+1

12 F k+2−

c

+AJk+1

t ] + (DJk+1

)TP Jk+1︸ ︷︷ ︸
0

u̇ (80)

From the definition of the orthogonal complement of joint motion subspace, the constraint force
F k+1+

c can be expressed in terms of the measure numbers of the constraint torques τ̃ck+1+

and

constraint forces f̃c
k+1+

as

F k+1+

MN =

[
τ̃c

k+1+

f̃c
k+1+

]
(81)

F k+1+

c = DJk+1

F k+1+

MN (82)

Substituting the above into equation (80)

(DJk+1

)T [ζk+1
11 + ζk

22]D
Jk+1

F k+1+

MN = (DJk+1

)T [ζk
21F

k+
c − ζk+1

12 F k+2−

c

+ζk
23 − ζk+1

13 + AJk+1

t ] (83)

The term (DJk+1
)T [ζ11

k+1+

+ζ22
k]DJk+1 is a symmetric positive definite matrix and hence there

is no problem associated with its inversion.

Let (DJk+1

)T [ζk+1
11 + ζk

22]D
Jk+1

= X̂ (84)

⇒ F k+1+

MN = X̂−1(DJk+1

)T [ζk
21F

k+
c − ζk+1

12 F k+2−

c + ζk
23 − ζk+1

13 + AJk+1

t ] (85)
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Pre-multiplying the above expression by DJk+1 to get the desired expression for F k+1+

c

F k+1+

c = DJk+1

F k+1+

MN (86)

= DJk+1kX̂−1(DJk+1

)T [ζk
21F

k+
c − ζk+1

12 F k+2−

c + ζk
23 − ζk+1

13 + AJk+1

t ] (87)

The above expression for F k+1+

c can be compactly written as below

F k+1+

c = Ŵ ζk
21F

k+
c − Ŵ ζk+1

12 F k+2−

c + Ŷ (88)

where Ŵ = DJk+1

X̂−1(DJk+1

)T (89)

and Ŷ = Ŵ [ζk
23 − ζk+1

13 + AJk+1

t ] (90)

The expression for F k+1−
c is substituted in equation (73) and (76) and after some algebraic

manipulation, the two handle equation of motion of the assembly of Body k and Body (k+1) are
obtained as

A k+ = [ζk
11 − ζk

12Ŵ ζk
21]F

k+
c + ζk

12Ŵ ζk+1
12 F k+2−

c + ζk
13 − ζk

12Ŷ (91)

A k+2− = ζk+1
21 Ŵ ζk

21F
k+
c + [ζk+1

22 − ζk+1
21 Ŵ ζk+1

12 ]F k+2−

c + ζk+1
23 + ζk+1

21 Ŷ (92)

From above, the recursive expression for Υk:k+1
ij appearing in equations (7)(8) can be obtained

as

Υk:k+1
11 = [ζk

11 − ζk
12 Ŵ ζk

21] (93)

Υk:k+1
22 = [ζk+1

22 − ζk+1
21 Ŵ ζk+1

12 ] (94)

Υk:k+1
12 = ζk

12 Ŵ ζk+1
12 (95)

Υk:k+1
21 = ζk+1

21 Ŵ ζk
21 (96)

Υk:k+1
13 = ζk

13 − ζk
12Ŷ (97)

Υk:k+1
23 = ζk+1

23 + ζk+1
21 Ŷ (98)

These recursive formulae are used in the hierarchic assembly process to couple together the
equations of motion of successive assemblies to form the two handle equations of motion of the
resulting higher order assembly.

4 Computational Complexity

As indicated in section (2.1), each body of the system represents a single node at the leaf
level of a binary tree. The algorithm works in four sweeps of the binary tree and the calculation
of the spatial acceleration of the joints is carried out in O(log(nb)) complexity (when performed
in parallel) as explained in [18]. The traversal of the system topology in the binary tree form
allows the processes to be time optimal O(log(nb)) by using O(nb) processors. The binary tree
is mapped directly onto O(nb) processors in a tree structure, where nb in this context is the
number of bodies (leaf level subassemblies) which make up the system. The architecture of the
process is discussed in [18][19] and is not discussed further here.

Once the spatial accelerations of the handles on a constituent body have been determined,
the time derivatives of the modal coordinates for the body are uncoupled and can be calculated
independent of the other bodies of the system. As indicated in equation (64), the expression for
the time derivatives of the modal coordinates involves a matrix inversion of the term Γ k

FF . If
the admissible mode shapes for a body is comprised only of natural modes of vibration which
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Figure 4: Longitudinal Vibration of Substructured Bar

are mutually orthogonal, this matrix is diagonal. Hence the cost associated with its inversion
is O(νk). However if the admissible mode shapes chosen are not orthogonal, as in the case of
static correction modes, the matrix is no longer diagonal. Depending on the number of non-
orthogonal mode shapes, the matrix is sparsely populated with the off-diagonal terms providing
the coupling between non-orthogonal modes. In the worst case where there is coupling between
all modes chosen for the body, the matrix is fully populated and the cost associated with its
inversion is O(max (ν)3 ). However, the matrix Γ k

FF contains time invariant coefficients of
the modal degrees of freedom, and hence remains constant during the simulation. Thus its
inversion need only be calculated once in a pre-processing step, and as such this cost should
not be considered in the cost per temporal integration step determination. The cost which is
incurred at each evaluation is the ΓRF Γ−1

FF multiplication which appears in equation (65). This
is because matrix ΓRF is state dependent and will thus vary with each temporal integration step.
For a fully populated Γ k

FF , this matrix multiplication yields a maximum cost of O(νi)
2 per

integration step.
In the binary tree mapping, each body is mapped onto an individual processor. Hence the

matrix multiplication ΓRF Γ−1
FF can be independently calculated in O(νi)

2 complexity on each
processor unless some additional parallel methods are implemented to specifically deal with
the possibly large matrix multiplications. These will not be discussed here. Instead, the perfor-
mance of the method will be crudel determined by assuming that all flexible body manipulations
associated with Body k are restricted to the single processor to which Body k is mapped. The
maximum complexity of this process is thus O(max (νi)

2 ), where max (νi) is the maximum
number of assumed modes on any constituent body of the system. The effective computa-
tional cost (which manifests itself as wall time) of the algorithm can thus be calculated as
O(log(nb)) + O(max (νi)

2 ) when implemented in parallel on processor optimal O(nb) proces-
sors.
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5 Numerical Examples

To validate the algorithm presented here, simulation results from the modelling of two test
cases are presented here. The first test case is the modelling of the longitudinal vibrations of an
uniform bar. The bar is modelled as an elastic body, clamped at one end and free at the other.
The modulus of elasticity and mass density of the rod is assumed to be unity. The length of the
rod is 4 units and it is released from rest under an initial state of compressive strain of 0.01. The
bar is sub-structured into four bar elements, each of unit length. Each bar element is connected
to its parent element by rigid joints, i.e. no rigid body degrees of freedom are maintained at
the joint between two consecutive bodies. The flexibility of the bar elements is modelled using
assumed modes with the first four natural modes of vibration of a clamped-free bar chosen as
the admissible shape functions. This system was chosen because the system behavior is easy to
visualize and the exact analytical solution is readily available. The result shown in figure (4) is
for a 10 second simulation and presents the tip displacement, as well as the displacement error
(difference between the analytic solution and the FDCA solution) time histories. The result is in
good agreement with the analytical solution, with error of form and magnitude appropriate for
the approximation of this continuous system. Since a truncated set of modes are used, the model
fails to capture the exact behavior at the tip. This is a characteristic behavior of the assumed
mode modelling technique and not a shortcoming of the algorithm. The implementation was
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carried out in MatlabTM and the MatlabTM ode45 was used for numerical integration.
The second example is associated with the articulate flexible two member arm system shown

in figure (5). The system consists of two elastic bars, each with point masses at the end. The
two joints in the system are revolute and the angular motions of the two bars are prescribed as
below described in (99). The transverse and longitudinal vibrations of each arm are modelled
using two shape functions, one for each vibration mode as shown in equations (101-102). This
system has been simulated in [30]-[32] and established results are available for this problem.
The system requires appropriate handling of the geometric stiffening effect and in the imple-
mentation here, the modelling approach outlined in [33][34] is used. The system is started from
static equilibrium and undergoes prescribed angular motion for 0.5 seconds. The prescribed
motion of the angles are shown in equations (99-100). After that, the system performs har-
monic oscillations under the effect of gravity and internal strain energy. The results show the
variation of the position of the tip (point P) with time. The results presented here are in agree-
ment with the solutions in [30]-[32]. The implementation of the algorithm is clearly able to
handle the geometric stiffening effect and accurately capture the dynamics of the system. This
implementation too was carried out in MatlabTM and the numerical integration carried out using
the MatlabTM ode45.

φ1 = −π/4 · · · −∞ < t < 0 (99)
= π/4(−1 + 72t3) · · · 0 < t < 1/6

= π/4(−18t+ 108t2 − 144t3) · · · 1/6 ≤ t < 1/3

= π/4(−8 + 54t− 108t2 + 72t3) · · · 1/3 ≤ t < 1/2

= π/4 · · · t > 1/2

φ2 = −φ1 (100)

Longitudinal Vibration : (
x

L
)2 (101)

Transverse Vibration : 1.5(
x

L
)2 − 0.5(

x

L
)3 (102)

6 Conclusion and Future Work

A new algorithm for solving the equations of motion of articulated flexible body systems
is presented in this paper. The equations of motion for tree topology articulated body systems
comprising of arbitrary number of flexible and rigid bodies connected together by kinematic
joints can be efficiently generated and solved using this algorithm. The computational com-
plexity of this algorithm when implemented on O(nb) processors is expected to be O(log(nb))
+O(max(νi)

2), where max νi is the maximum number of admissible shape functions for any
constituent body of the system. The algorithm follows a divide and conquer scheme similar
to the one presented in [18]. The elastic deformation of the component bodies is modelled by
using superposition of a truncated set of admissible shape functions. Other than the use of su-
perposition of a truncated set of component modes, no approximations are made. If the elastic
deformations in the algorithm are neglected, the algorithm reduces to an exact algorithm for
rigid body articulated systems. Although the equations derived above are for chain systems,
the extension to tree topologies is trivial. [19] contains a detailed discussion on the accuracy
of the RDCA and suggests a pivoting scheme for improving accuracy in a rigid body context.
The discussions in [19] are generic to the DCA scheme and it is expected that they would be
applicable to the present work. A detailed analysis and comparison of the numerical accuracy
of the algorithm, as well as the implementation of this algorithm for systems with kinematically

Paper #:CND-05-1055 Corresponding Author: Kurt S. Anderson 21



Rudranarayan M. Mukherjee, Kurt S. Anderson

closed loops are discussed in a forthcoming paper.
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